Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1281670, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37929176

RESUMO

Introduction and aims: In the context of increasing population and decreasing soil fertility, food security is one of humanity's greatest challenges. Large amounts of waste, such as sewage sludge, are produced annually, with their final disposal causing environmental pollution and hazards to human health. Sludge has high amounts of nitrogen (N), and, when safely recycled by applying it into the soil as composted sewage sludge (CSS), its residual effect may provide gradual N release to crops. A field study was conducted in the Brazilian Cerrado. The aims were to investigate the residual effect of successive applications of CSS as a source of N in the common bean (Phaseolus vulgaris L. cv. BRS Estilo)-palisade grass (Urochloa brizantha (A.Rich.) R.D. Webster)-soybean (Glycine max L.) rotation under no-tillage. Additionally, N cycling was monitored through changes in N metabolism; the efficiency of biological N2 fixation (BNF) and its implications for plant nutrition, development, and productivity, was also assessed. Methods: The experiment consisted of a randomized complete block design comparing four CSS rates (10, 15, 20, and 25 Mg ha-1, wet basis) to a control treatment (without adding mineral or organic fertilizer) over two crop years. Multiple plant and soil analyses (plant development and crop yield, Falker chlorophyll index (FCI), enzymatic, biochemical, 15N natural abundance, was evaluated, root and shoot N accumulation, etc.) were evaluated. Results and discussion: Results showed that CSS: i) maintained adequate N levels for all crops, increasing their productivity; ii) promoted efficient BNF, due to the stability of ureide metabolism in plants and increased protein content; iii) increased the nitrate content and the nitrate reductase activity in soybean; iv) affected urease activity and ammonium content due to changes in the plant's urea metabolism; v) increased N accumulation in the aerial part of palisade grass. Composted sewage sludge can be used as an alternative source to meet crops' N requirements, promoting productivity gains and N cycling through forage and improving N metabolism.

2.
Physiol Mol Biol Plants ; 28(6): 1335-1345, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35910437

RESUMO

Soil contamination by excess heavy metals or trace elements is a global concern, as these elements are highly bioaccumulated in living organisms, migrating throughout the food chain, and causing health problems. Sustainable technologies, using plants, have been increasingly studied and used to contain, reduce, or extract these elements from the soil. In this sense, it is essential to identify plant species that tolerate certain elements, present high biomass production and are resistant to adverse soil conditions. For this reason, we evaluated the biomass production and tolerance of Cajanus cajan in response to different concentrations of copper (30, 60, 120, and 240 mg/dm3, in addition to the control treatment) in the soil, as well as the effect of this metal on photosynthetic pigments and gas exchange. C. cajan was sown in soil previously contaminated with copper sulfate and cultivated in a greenhouse for 60 days after emergence. C. cajan is copper tolerant, approximately 88% copper is accumulated in the roots and therefore there is low copper translocation to the shoot, consequently, the chlorophyll content, the net photosynthesis rate, carbon assimilation, dry biomass, the root system development, and nodulation were not affected by copper. C. cajan can be explored in strategies to improve soil conditions and is a promising species in soil phytoremediation studies. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01203-6.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...